Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107830, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766976

RESUMEN

Highly pathogenic avian influenza A H5N1 viruses cause high mortality in humans and have pandemic potential. Effective vaccines and treatments against this threat are urgently needed. Here, we have refined our previously established model of lethal H5N1 infection in cynomolgus macaques. An inhaled aerosol virus dose of 5.1 log10 plaque-forming unit (pfu) induced a strong febrile response and acute respiratory disease, with four out of six macaques succumbing after challenge. Vaccination with three doses of adjuvanted seasonal quadrivalent influenza vaccine elicited low but detectable neutralizing antibody to H5N1. All six vaccinated macaques survived four times the 50% lethal dose of aerosolized H5N1, while four of six unvaccinated controls succumbed to disease. Although vaccination did not protect against severe influenza, vaccinees had reduced respiratory dysfunction and lower viral load in airways compared to controls. We anticipate that our macaque model will play a vital role in evaluating vaccines and antivirals against influenza pandemics.

2.
Nat Commun ; 14(1): 1914, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024448

RESUMEN

The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Animales , Humanos , Macaca mulatta , SARS-CoV-2 , Macrófagos , Inflamación , Citocinas , Glicoproteínas de Membrana , Receptores Inmunológicos
3.
PLoS Pathog ; 18(3): e1010395, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35271686

RESUMEN

Severe influenza kills tens of thousands of individuals each year, yet the mechanisms driving lethality in humans are poorly understood. Here we used a unique translational model of lethal H5N1 influenza in cynomolgus macaques that utilizes inhalation of small-particle virus aerosols to define mechanisms driving lethal disease. RNA sequencing of lung tissue revealed an intense interferon response within two days of infection that resulted in widespread expression of interferon-stimulated genes, including inflammatory cytokines and chemokines. Macaques with lethal disease had rapid and profound loss of alveolar macrophages (AMs) and infiltration of activated CCR2+ CX3CR1+ interstitial macrophages (IMs) and neutrophils into lungs. Parallel changes of AMs and neutrophils in bronchoalveolar lavage (BAL) correlated with virus load when compared to macaques with mild influenza. Both AMs and IMs in lethal influenza were M1-type inflammatory macrophages which expressed neutrophil chemotactic factors, while neutrophils expressed genes associated with activation and generation of neutrophil extracellular traps (NETs). NETs were prominent in lung and were found in alveolar spaces as well as lung parenchyma. Genes associated with pyroptosis but not apoptosis were increased in lung, and activated inflammatory caspases, IL-1ß and cleaved gasdermin D (GSDMD) were present in bronchoalveolar lavage fluid and lung homogenates. Cleaved GSDMD was expressed by lung macrophages and alveolar epithelial cells which were present in large numbers in alveolar spaces, consistent with loss of epithelial integrity. Cleaved GSDMD colocalized with viral NP-expressing cells in alveoli, reflecting pyroptosis of infected cells. These novel findings reveal that a potent interferon and inflammatory cascade in lung associated with infiltration of inflammatory macrophages and neutrophils, elaboration of NETs and cell death by pyroptosis mediates lethal H5N1 influenza in nonhuman primates, and by extension humans. These innate pathways represent promising therapeutic targets to prevent severe influenza and potentially other primary viral pneumonias in humans.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Interferones/inmunología , Pulmón , Macrófagos Alveolares/inmunología , Neutrófilos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Primates , Piroptosis
4.
bioRxiv ; 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34642693

RESUMEN

The COVID-19 pandemic remains a global health crisis, yet, the immunopathological mechanisms driving the development of severe disease remain poorly defined. Here, we utilize a rhesus macaque (RM) model of SARS-CoV-2 infection to delineate perturbations in the innate immune system during acute infection using an integrated systems analysis. We found that SARS-CoV-2 initiated a rapid infiltration (two days post infection) of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and induction of interferon-stimulated genes. At this early interval, we also observed a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generated a novel compendium of RM-specific lung macrophage gene expression using a combination of sc-RNA-Seq data and bulk RNA-Seq of purified populations under steady state conditions. Using these tools, we generated a longitudinal sc-RNA-seq dataset of airway cells in SARS-CoV-2-infected RMs. We identified that SARS-CoV-2 infection elicited a rapid recruitment of two subsets of macrophages into the airway: a C206+MRC1-population resembling murine interstitial macrophages, and a TREM2+ population consistent with CCR2+ infiltrating monocytes, into the alveolar space. These subsets were the predominant source of inflammatory cytokines, accounting for ~75% of IL6 and TNF production, and >90% of IL10 production, whereas the contribution of CD206+MRC+ alveolar macrophages was significantly lower. Treatment of SARS-CoV-2 infected RMs with baricitinib (Olumiant ® ), a novel JAK1/2 inhibitor that recently received Emergency Use Authorization for the treatment of hospitalized COVID-19 patients, was remarkably effective in eliminating the influx of infiltrating, non-alveolar macrophages in the alveolar space, with a concomitant reduction of inflammatory cytokines. This study has delineated the major subsets of lung macrophages driving inflammatory and anti-inflammatory cytokine production within the alveolar space during SARS-CoV-2 infection. ONE SENTENCE SUMMARY: Multi-omic analyses of hyperacute SARS-CoV-2 infection in rhesus macaques identified two population of infiltrating macrophages, as the primary orchestrators of inflammation in the lower airway that can be successfully treated with baricitinib.

5.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177201

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in children of <5 years of age worldwide, infecting the majority of infants in their first year of life. Despite the widespread impact of this virus, no vaccine is currently available. For more than 50 years, live attenuated vaccines (LAVs) have been shown to protect against other childhood viral infections, offering the advantage of presenting all viral proteins to the immune system for stimulation of both B and T cell responses and memory. The RSV LAV candidate described here, rgRSV-L(G1857A)-G(L208A), contains two modifications: an attenuating mutation in the S-adenosylmethionine (SAM) binding site of the viral mRNA cap methyltransferase (MTase) within the large (L) polymerase protein and a mutation in the attachment (G) glycoprotein that inhibits its cleavage during production in Vero cells, resulting in virus with a "noncleaved G" (ncG). RSV virions containing the ncG have an increased ability to infect primary well-differentiated human bronchial epithelial (HBE) cultures which model the in vivo site of immunization, the ciliated airway epithelium. This RSV LAV candidate is produced efficiently in Vero cells, is highly attenuated in HBE cultures, efficiently induces neutralizing antibodies that are long lasting, and provides protection against an RSV challenge in the cotton rat, without causing enhanced disease. Similar results were obtained in a rhesus macaque.IMPORTANCE Globally, respiratory syncytial virus (RSV) is a major cause of death in children under 1 year of age, yet no vaccine is available. We have generated a novel RSV live attenuated vaccine candidate containing mutations in the L and G proteins. The L polymerase mutation does not inhibit virus yield in Vero cells, the cell type required for vaccine production, but greatly reduces virus spread in human bronchial epithelial (HBE) cultures, a logical in vitro predictor of in vivo attenuation. The G attachment protein mutation reduces its cleavage in Vero cells, thereby increasing vaccine virus yield, making vaccine production more economical. In cotton rats, this RSV vaccine candidate is highly attenuated at a dose of 105 PFU and completely protective following immunization with 500 PFU, 200-fold less than the dose usually used in such studies. It also induced long-lasting antibodies in cotton rats and protected a rhesus macaque from RSV challenge. This mutant virus is an excellent RSV live attenuated vaccine candidate.


Asunto(s)
Mutación , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Virus Sincitial Respiratorio Humano/inmunología , S-Adenosilmetionina/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral , Animales , Sitios de Unión , Femenino , Humanos , Macaca mulatta , Masculino , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Sigmodontinae , Vacunación , Proteínas del Envoltorio Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(35): 9433-9438, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28784796

RESUMEN

Protecting the fetus from the hematogenous spread of viruses requires multifaceted layers of protection and relies heavily on trophoblasts, the fetal-derived cells that comprise the placental barrier. We showed previously that trophoblasts isolated from full-term placentas resist infection by diverse viruses, including Zika virus (ZIKV), and transfer this resistance to nonplacental cells through the activity of paracrine effectors, including the constitutive release of type III interferons (IFNs). Here, we developed 3D cell-line-based models of human syncytiotrophoblasts, cells that lie in direct contact with maternal blood, and show that these cells recapitulate the antiviral properties of primary trophoblasts through the constitutive release of type III IFNs (IFNλ1 and IFNλ2) and become resistant to ZIKV infection. In addition, using organotypic human midgestation chorionic villous explants, we show that syncytiotrophoblasts isolated from the second trimester of pregnancy also constitutively release type III IFNs and use these IFNs in autocrine and paracrine manners to restrict ZIKV infection. Collectively, these data provide important insights into the defense mechanisms used by syncytiotrophoblasts at various stages of human gestation to resist ZIKV infection and new human models to study the role of type III IFNs in the vertical transmission of ZIKV and other viruses associated with congenital disease.


Asunto(s)
Fibroblastos/inmunología , Fibroblastos/virología , Infección por el Virus Zika/inmunología , Virus Zika/fisiología , Línea Celular , Humanos , Relaciones Materno-Fetales , Nitrilos , Pirazoles/farmacología , Pirimidinas
7.
J Virol ; 90(3): 1311-20, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581976

RESUMEN

UNLABELLED: All live attenuated respiratory syncytial virus (RSV) vaccines that have advanced to clinical trials have been produced in Vero cells. The attachment (G) glycoprotein in virions produced in these cells is smaller than that produced in other immortalized cells due to cleavage. These virions are 5-fold less infectious for primary well-differentiated human airway epithelial (HAE) cell cultures. Because HAE cells are isolated directly from human airways, Vero cell-grown vaccine virus would very likely be similarly inefficient at initiating infection of the nasal epithelium following vaccination, and therefore, a larger inoculum would be required for effective vaccination. We hypothesized that Vero cell-derived virus containing an intact G protein would be more infectious for HAE cell cultures. Using protease inhibitors with increasing specificity, we identified cathepsin L to be the protease responsible for cleavage. Our evidence suggests that cleavage occurs in the late endosome or lysosome during endocytic recycling. Cathepsin L activity was 100-fold greater in Vero cells than in HeLa cells. In addition, cathepsin L was able to cleave the G protein in Vero cell-grown virions but not in HeLa cell-grown virions, suggesting a difference in G-protein posttranslational modification in the two cell lines. We identified by mutagenesis amino acids important for cleavage, and these amino acids included a likely cathepsin L cleavage site. Virus containing a modified, noncleavable G protein produced in Vero cells was 5-fold more infectious for HAE cells in culture, confirming our hypothesis and indicating the value of including such a mutation in future live attenuated RSV vaccines. IMPORTANCE: Worldwide, RSV is the second leading infectious cause of infant death, but no vaccine is available. Experimental live attenuated RSV vaccines are grown in Vero cells, but during production the virion attachment (G) glycoprotein is cleaved. Virions containing a cleaved G protein are less infectious for primary airway epithelial cells, the natural RSV target. In the study described here we identified the protease responsible, located the cleavage site, and demonstrated that cleavage likely occurs during endocytic recycling. Moreover, we showed that the infectivity of Vero cell-derived virus for primary airway epithelial cells is increased 5-fold if the virus contains a mutation in the G protein that prevents cleavage. The blocking of cleavage should improve RSV vaccine yield, consequently reducing production costs. Posttranslational cleavage of the fusion glycoprotein of many viruses plays an essential role in activation; however, cleavage of the RSV G protein is a novel example of a detrimental effect of cleavage on virus infectivity.


Asunto(s)
Células Epiteliales/virología , Virus Sincitiales Respiratorios/fisiología , Proteínas del Envoltorio Viral/metabolismo , Animales , Catepsina L/metabolismo , Células Cultivadas , Análisis Mutacional de ADN , Humanos , Hidrólisis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Envoltorio Viral/genética , Virulencia
8.
Virology ; 449: 62-9, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24418538

RESUMEN

Respiratory syncytial virus (RSV)-induced bronchiolitis in infants is not responsive to glucocorticoids. We have shown that RSV infection impairs glucocorticoid receptor (GR) function. In this study, we have investigated the mechanism by which RSV impairs GR function. We have shown that RSV repression of GR-induced transactivation is not mediated through a soluble autocrine factor. Knock-down of mitochondrial antiviral signaling protein (MAVS), but not retinoic acid-inducible gene 1 (RIG-I) or myeloid differentiation primary response gene 88 (MyD88), impairs GR-mediated gene activation even in mock-infected cells. Over-expression of the RSV nonstructural protein NS1, but not NS2, impairs glucocorticoid-induced transactivation and viruses deleted in NS1 and/or NS2 are unable to repress glucocorticoid-induction of the known GR regulated gene glucocorticoid-inducible leucine zipper (GILZ). These data suggest that the RSV nonstructural proteins mediate RSV repression of GR-induced transactivation and that inhibition of the nonstructural proteins may be a viable target for therapy against RSV-related disease.


Asunto(s)
Receptores de Glucocorticoides/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Activación Transcripcional , Proteínas no Estructurales Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Regulación hacia Abajo , Glucocorticoides/metabolismo , Humanos , Receptores de Glucocorticoides/genética , Receptores Inmunológicos , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/genética , Proteínas no Estructurales Virales/genética
9.
FEBS Open Bio ; 3: 305-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951552

RESUMEN

Respiratory syncytial virus (RSV)-induced bronchiolitis in infants, although inflammatory in nature, is not responsive to glucocorticoids. We have recently shown that RSV-infected lung epithelial cells have impaired glucocorticoid receptor (GR)-mediated transactivation. In this study, we show that the N-terminal region of GR is required for RSV repression of GR transactivation and that RSV infection of lung epithelial cells reduces ligand-dependent GR phosphorylation at serine 211 and serine 226. However, we also show that these changes in GR phosphorylation do not account for the RSV repression of GR transactivation suggesting other regions of the GR N-terminus must also be involved.

10.
Virus Res ; 176(1-2): 303-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23830998

RESUMEN

Respiratory syncytial virus (RSV)-induced bronchiolitis in infants is not responsive to glucocorticoids. We have recently shown that RSV infection of lung epithelial cells impairs glucocorticoid receptor (GR) function. In this current study, we have shown that the viral mimic poly I:C also represses GR-mediated gene activation in lung epithelial cells, suggesting that this might be a common phenomenon of other viral infections. However, we also show that neither RSV infection nor poly I:C affect GR-mediated gene activation in the monocytic cell line THP-1, suggesting that these effects on GR function may be cell-type specific.


Asunto(s)
Células Epiteliales/inmunología , Células Epiteliales/virología , Monocitos/inmunología , Monocitos/virología , Poli I-C/metabolismo , Receptores de Glucocorticoides/metabolismo , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Línea Celular , Células Cultivadas , Humanos , Lactante , Activación Transcripcional
11.
J Inflamm Res ; 5: 89-97, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952414

RESUMEN

PURPOSE: Glucocorticoids are commonly prescribed to treat a number of diseases including the majority of inflammatory diseases. Despite considerable interpersonal variability in response to glucocorticoids, an insensitivity rate of about 30%, and the risk of adverse side effects of glucocorticoid therapy, currently no assay is performed to determine sensitivity. PATIENTS AND METHODS: Here we propose a whole blood ex vivo stimulation assay to interrogate known glucocorticoid receptor (GR) up- and downregulated genes to indicate glucocorticoid sensitivity. We have chosen to employ real-time PCR in order to provide a relatively fast and inexpensive assay. RESULTS: We show that the GR-regulated genes, GILZ and FKBP51, are upregulated in whole blood by treatment with dexamethasone and that LPS-induction of cytokines (IL-6 and TNFα) are repressed by dexamethasone in a dose responsive manner. There is considerable interpersonal variability in the maximum induction of these genes but little variation in the EC(50) and IC(50) concentrations. The regulation of the GR-induced genes differs throughout the day whereas the suppression of LPS-induced cytokines is not as sensitive to time of day. CONCLUSION: In all, this assay would provide a method to determine glucocorticoid receptor responsiveness in whole blood.

12.
Endocrinology ; 152(2): 483-94, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21190962

RESUMEN

Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in infants. Although antiinflammatory in nature, glucocorticoids have been shown to be ineffective in the treatment of RSV-induced bronchiolitis and wheezing. In addition, the effectiveness of glucocorticoids at inhibiting RSV-induced proinflammatory cytokine production in cell culture has been questioned. In this study, we have investigated the effect of RSV infection on glucocorticoid-induced gene activation in lung epithelium-derived cells. We show that RSV infection inhibits dexamethasone induction of three glucocorticoid receptor (GR)-regulated genes (glucocorticoid-inducible leucine zipper, FK506 binding protein, and MAPK phosphatase 1) in A549, BEAS-2B cells, and primary small airway epithelial cells. UV irradiation of the virus prevents this repression, suggesting that viral replication is required. RSV is known to activate the nuclear factor κB (NFκB) pathway, which is mutually antagonistic towards the GR pathway. However, specific inhibition of NFκB had no effect on the repression of GR-induced genes by RSV infection, indicating that RSV repression of GR is independent of NFκB. RSV infection of A549 cells does not alter GR protein levels or GR nuclear translocation but does reduce GR binding to the promoters of the glucocorticoid responsive genes analyzed in this study. Repression of GR by RSV infection may account for the apparent clinical ineffectiveness of glucocorticoids in RSV bronchiolitis therapy. In addition, this data adds to our previously published data suggesting that GR may be a general target for infectious agents. Identifying the mechanisms through which this suppression occurs may lead to the development of novel therapeutics.


Asunto(s)
Receptores de Glucocorticoides/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitiales Respiratorios/fisiología , Activación Transcripcional/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Inmunoprecipitación de Cromatina , Dexametasona/farmacología , Ensayo de Inmunoadsorción Enzimática , Silenciador del Gen , Humanos , Inmunohistoquímica , Interleucina-1beta/farmacología , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño/genética , Receptores de Glucocorticoides/genética , Infecciones por Virus Sincitial Respiratorio/virología , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...